Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(11): 113524, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461541

RESUMO

The Gamma Ray Imager (GRI) is a pinhole camera providing 2D imaging of MeV hard x-ray (HXR) bremsstrahlung emission from runaway electrons (REs) over the poloidal cross section of the DIII-D tokamak. We report a series of upgrades to the GRI expanding the access to RE scenarios from the diagnosis of a trace amount of REs to high flux HXR measurements during the RE plateau phase. We present the implementation of novel gamma ray detectors based on LYSO and YAP crystals coupled to multi-pixel photon counters, enabling a count rate in excess of 1 MHz. Finally, we highlight new insights into the RE physics discovered during the current quench and RE plateau phase experiments as the result of these upgrades.

2.
Rev Sci Instrum ; 92(4): 043517, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243482

RESUMO

A novel compact spectrometer optimized for the measurement of hard x rays generated by runaway electrons is presented. The detector is designed to be installed in the fan-shaped collimator of the gamma-ray imager diagnostic at the DIII-D tokamak. The spectrometer is based on a 1 × 1 cm2 cerium doped yttrium aluminum perovskite scintillator crystal coupled with a silicon photomultiplier. The detector dynamic energy range is in excess of 10 MeV, with an energy resolution of ∼10% at 661.7 keV. The fast detector signal (≈70 ns full width at half maximum) allows for operation at counting rates in excess of 1 MCps. The gain stability of the system can be monitored in real time using a light-emitting diode embedded in the instrument. The detector is expected to be deployed in the forthcoming DIII-D runaway electron experimental campaign.

3.
Rev Sci Instrum ; 89(10): 10I134, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399979

RESUMO

A new compact gamma-ray spectrometer was developed in order to optimise the measurement of bremsstrahlung radiation emitted from runaway electrons in the MeV range. The detector is based on a cerium doped lutetium-yttrium oxyorthosilicate (LYSO:Ce) scintillator coupled to a silicon photomultiplier and is insensitive to magnetic fields. A dedicated electronic board was developed to optimise the signal readout as well as for online control of the device. The detector combines a dynamic range up to 10 MeV with moderate energy non-linearity, counting rate capabilities in excess of 1 MHz, and an energy resolution that extrapolates to a few % in the MeV range, thus meeting the requirements for its application to runaway electron studies by bremsstrahlung measurements in the gamma-ray energy range.

4.
Phys Rev Lett ; 120(15): 155002, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29756886

RESUMO

DIII-D experiments at low density (n_{e}∼10^{19} m^{-3}) have directly measured whistler waves in the 100-200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limit-cycle-like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission that follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.

5.
Phys Rev Lett ; 118(25): 255002, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28696735

RESUMO

Novel spatial, temporal, and energetically resolved measurements of bremsstrahlung hard-x-ray (HXR) emission from runaway electron (RE) populations in tokamaks reveal nonmonotonic RE distribution functions whose properties depend on the interplay of electric field acceleration with collisional and synchrotron damping. Measurements are consistent with theoretical predictions of momentum-space attractors that accumulate runaway electrons. RE distribution functions are measured to shift to a higher energy when the synchrotron force is reduced by decreasing the toroidal magnetic field strength. Increasing the collisional damping by increasing the electron density (at a fixed magnetic and electric field) reduces the energy of the nonmonotonic feature and reduces the HXR growth rate at all energies. Higher-energy HXR growth rates extrapolate to zero at the expected threshold electric field for RE sustainment, while low-energy REs are anomalously lost. The compilation of HXR emission from different sight lines into the plasma yields energy and pitch-angle-resolved RE distributions and demonstrates increasing pitch-angle and radial gradients with energy.

6.
Phys Rev Lett ; 110(23): 235003, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25167504

RESUMO

Magnetic turbulence is observed at the beginning of the current quench in intended TEXTOR disruptions. Runaway electron (RE) suppression has been experimentally found at magnetic turbulence larger than a certain threshold. Below this threshold, the generated RE current is inversely proportional to the level of magnetic turbulence. The magnetic turbulence originates from the background plasma and the amplitude depends strongly on the toroidal magnetic field and plasma electron density. These results explain the previously found toroidal field threshold for RE generation and have to be considered in predictions for RE generation in ITER.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...